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The interactions and merging of two unequal co-rotating vortices in a viscous
fluid are investigated. Two-dimensional numerical simulations of initially equal-sized
vortices with differing relative strengths are performed. In the case of equal-strength
vortices, i.e. symmetric vortex pairs (Brandt & Nomura, J. Fluid Mech., vol. 592, 2007,
pp. 413–446), the mutually induced strain deforms and tilts the vortices, which leads
to a core detrainment process. The weakened vortices are mutually entrained and
rapidly move towards each other as they intertwine and destruct. The flow thereby
develops into a single compound vortex. With unequal strengths, i.e. asymmetric
pairs, the disparity of the vortices alters the interaction. Merger may result from
reciprocal but unequal entrainment, which yields a compound vortex; however other
outcomes are possible. The various interactions are classified based on the relative
timing of core detrainment and core destruction of the vortices. Through scaling
analysis and simulation results, a critical strain rate parameter which characterizes the
establishment of core detrainment is identified and determined. The onset of merging
is associated with the achievement of the critical strain rate by ‘both’ vortices, and
a merging criterion is thereby developed. In the case of symmetric pairs, the critical
strain rate parameter is shown to be related to the critical aspect ratio. In contrast with
symmetric merger, which is in essence a flow transformation, asymmetric merger may
result in the domination of the stronger vortex because of the unequal deformation
rates. If the disparity of the vortex strengths is sufficiently large, the critical strain
rate is not attained by the stronger vortex before destruction of the weaker vortex,
and the vortices do not merge.

1. Introduction
The merging of two co-rotating vortices is an elementary vortex interaction of both

fundamental and practical significance. It plays an important role in the transfer
of energy and enstrophy across scales in transitional and turbulent flows. It may
also occur in the near-field wake of an aircraft with extended flaps. Yet despite its
apparent simplicity and much research, the physical mechanisms of vortex merger
have not been fully understood. In the idealized case of ‘symmetric’ vortex pairs
(equal-size and equal-strength vortices), it is known that if the aspect ratio a/b (core
size/separation distance) exceeds a critical value, the vortices will merge into a single
vortex. What is more commonly observed are ‘asymmetric’ vortex pairs (unequal-size
and/or unequal-strength vortices). In this case, there is greater variation in flow
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behaviour, and the interaction of the vortices may result in the destruction of the
smaller and/or weaker vortex. Previous studies of inviscid flow have identified different
flow regimes (Dritschel & Waugh 1992; Trieling, Velasco Fuentes & van Heijst 2005).
There has been limited consideration of viscous flow. In general, the associated physics
are unclear, and a general merging criterion has not been established.

In symmetric vortex merger, two vortices, each with circulation Γ and core size a,
separated by a distance b, will rotate about one another because of their mutually
induced velocity. In viscous flow, the vortices grow by diffusion, and when a critical
aspect ratio (a/b)cr is reached, the vortices move towards each other and develop
into a single vortex. The physical mechanisms of this process have been considered
in a number of studies (Melander, Zabusky & McWilliams 1988; Meunier 2001;
Cerretelli & Williamson 2003; Huang 2005; Velasco Fuentes 2005; Brandt & Nomura
2006, 2007). Melander et al. (1988) examined the flow structure in the co-rotating
frame of reference which consists of the inner cores, the exchange band and the
outer recirculation regions (see figure 4a). They indicated that filamentation, which
occurs when vorticity enters the outer recirculation regions, modifies the orientation
of vorticity contours with respect to the streamlines, and this leads to merger through
an inviscid axisymmetrization process. Meunier (2001) and Cerretelli & Williamson
(2003) described the merging process in terms of three phases of development, namely
diffusive, convective and second diffusive, and associated the onset of merger with
the start of the convective phase. They also considered the filaments as the primary
driver of convective merger. However, Velasco Fuentes (2005) found that filamentation
does not always lead to merger, and in the case of steep vorticity profiles, merger
begins before filamentation takes place. Huang (2005) analysed the flow in terms of
Lagrangian flow structures and found that both filament and exchange band fluid are
responsible for the induced motion of the vortices towards each other.

Recently, Brandt & Nomura (2006, 2007) performed a detailed study of symmetric
merger, which clarified the role of filaments and identified the key mechanism involved
in the onset of merging. They found that although vorticity associated with filaments
acts to advect the vortices towards each other, it does not drive the merger to
completion, and in fact the motion may be reversed. The processes of deformation
and tilting of the vortices is described in terms of the interaction of vorticity gradient
∇ω and rate of strain S. The combined action of tilting and diffusion of vorticity near
the centre hyperbolic point, where vorticity is weak, results in the local misalignment
of ω and streamlines. This causes vorticity from the core region to enter the exchange
band, where it is advected away. The vortex cores are thereby eroded and rapidly
move towards each other as they are jointly entrained into the exchange band, whose
induced flow becomes dominant and transforms the flow into a single vortex.

In the case of asymmetric co-rotating vortex pairs, there are limited studies
(Melander, McWilliams & Zabusky 1987; Dritschel & Waugh 1992; Mitchell &
Driscoll 1996; Trieling et al. 2005). Melander et al. (1987) considered asymmetric
merger as an ultimate domination of one of the vortices. Dritschel & Waugh (1992),
using detailed contour dynamics simulations, considered the inviscid interactions
between two unequal-size vortex patches of uniform and equal vorticity. They
classified the interactions into five distinct regimes based on the efficiency of the
interaction, defined as the ratio of the final circulation to the initial circulation.
‘Elastic interaction’ occurs when there are only small deformations and essentially no
change in circulation of the vortices. ‘Partial straining-out’ and ‘complete straining-out’
regimes are associated with a reduction and a destruction, respectively, of the smaller
vortex, with no increase in the larger vortex. ‘Complete merger’ and ‘partial merger’



Characterization of the interactions of two unequal co-rotating vortices 235

correspond to increased circulation of the initially larger vortex; i.e. a compound
vortex which contains vorticity from both vortices is ultimately formed. A flow
regime map, in terms of the initial vortex radii ratio and initial separation distance,
is developed. Trieling et al. (2005) studied the inviscid interactions of unequal
vortices with non-uniform vorticity distributions including a Gaussian profile, which
is representative of actual viscous flows. They considered both unequal-size–equal-
vorticity and equal-size–unequal-vorticity cases. They found the same flow regimes
as those of Dritschel & Waugh (1992) to exist; however the regime boundaries are
highly sensitive to the vorticity profile. They showed, through the removal of the
low-level vorticity, that it is this ‘halo’ of low-level vorticity, and not the internal
vorticity distribution of the vortex, that causes an increase in the critical distance with
decreasing profile steepness. The influence of vorticity distribution was qualitatively
similar for both the equal-vorticity and equal-size cases. The resulting mapping of
flow regimes is a complex function of vorticity distribution, initial vortex radii ratio
(or initial vortex strength ratio) and initial separation distance.

Determination of a merging criterion for symmetric vortex pairs has been the
focus of a number of studies (Rossow 1977; Saffman & Szeto 1980; Overman &
Zabusky 1982; Griffiths & Hopfinger 1987; Meunier et al. 2002). Using contour
dynamics of uniform vortices, Saffman & Szeto (1980) and Overman & Zabusky
(1982) found a critical separation distance, above which equilibrium configurations of
non-circular vortices can exist and below which the vortices are unstable and merge.
Ehrenstein & Rossi (1999) and Meunier et al. (2002) considered equilibrium states
for non-uniform vortices. In these studies, the critical distance is associated with an
exchange of stability, which is considered as the onset of merger. The corresponding
vortex configuration is characterized by nearly elliptical streamlines within the inner
core region and the formation of a cusp at the core outer boundaries in the vicinity
of the centre of the pair, where vorticity is low. In the case of an asymmetric vortex
pair (Ehrenstein & Rossi 1999), the cusp forms at the outer boundary of the weaker
vortex. Meunier et al. (2002) developed a general merging criterion for equal non-
uniform vortices using both stability analysis and experimental data (viscous flow).
The criterion is expressed by a critical aspect ratio with the core size evaluated from
the second moment of vorticity (angular impulse). In the experiments, the onset of
merging is considered to be the transition from a diffusive-dominated to a convective-
dominated process, the former characterized by the diffusive growth of the core.
Their results give (a/b)cr = 0.24±0.01. The critical values from their stability analysis
are comparable although somewhat lower. They considered these values to differ,
since the values are associated with the inception of the instability of an inviscid
equilibrium configuration. We note that Brandt & Nomura (2007) determined a
critical aspect ratio, associated with the start of the erosion/entrainment process, of
(a/b)cr = 0.235 ± 0.006.

In the case of asymmetric merger, Trieling et al. (2005) attempted to normalize
the separation distance by the second moment of vorticity; however, this does not
yield a universal critical aspect ratio which marks the merging flow regimes. With
significant asymmetry between vortices, merger may not occur, and the weaker vortex
may be strained out and either partially or completely destroyed. Dritschel & Waugh
(1992) estimated a critical separation distance for complete destruction of the smaller
vortex (i.e. the boundary between partial and complete straining-out) by considering
the critical strain rate for an initially circular vortex to undergo irreversible tearing
by an imposed adverse shear (Kida 1981; Legras & Dritschel 1993; Mariotti, Legras
& Dritschel 1994). This provides a good estimation for the boundary between partial
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and complete straining-out regimes in the more asymmetric cases (ratio of initial radii
�0.4). The question that whether a universal critical aspect ratio can be defined for
asymmetric merger still remains.

In the present study, we investigate asymmetric co-rotating vortex pairs (equal-size–
unequal-strength vortices) in a viscous fluid. Our objectives are to identify the key
underlying physical processes involved in the development of the flow and characterize
the various flow regimes and vortex interactions. In particular, we establish the
conditions for merger. We consider this an important step towards formulating a
generalized vortex merging criterion.

We begin with a brief description of the numerical simulations in § 2. Results
are presented in terms of basic flow behaviour in § 3, and details of the physical
mechanisms are presented in § 4. From this knowledge, we determine a critical strain
rate parameter which forms the basis for a merging criterion in § 5. We then formulate
a merging criterion and develop a classification of the possible vortex interactions in
§ 6. The summary and conclusions are given in § 7.

2. Numerical simulations
Two-dimensional numerical simulations of a co-rotating vortex pair are performed

for this study. The initial flow field consists of two co-rotating Lamb–Oseen (Gaussian)
vortices which are equal in size (same ao) but differ in strength, with circulation of
vortex i, Γi,o. The initial flow geometry of the vortex pairs is specified by the
aspect ratio ao/bo which in these simulations is 0.157, where ao is defined based
on the second moment of vorticity. In the present simulations, the strength of
the stronger vortex is fixed and corresponds to a circulation Reynolds number of
ReΓ,1 =Γ1,o/ν = 5000. The strength of the weaker vortex varies with respect to the
stronger vortex such that the values of the initial circulation ratio ξΓ = Γ2,o/Γ1,o

considered are ξΓ = 1, 0.9, 0.8, 0.7, 0.6, 0.5 and 0.4. The corresponding range of ReΓ is
comparable to that of the symmetric vortex pair laboratory experiments (Meunier &
Leweke 2001) and numerical simulations (Brandt & Nomura 2007) and is moderate
in level such that viscous effects are important. We note that the Gaussian vorticity
distribution is representative of the initial stages of experimental vortices (Meunier &
Leweke 2001; Meunier et al. 2002). Based on our symmetric pair simulations, the initial
ao/bo is such that the vortices are expected to be sufficiently apart and the interaction
is established ‘naturally’ but within a relatively short simulation time. As will be
discussed, our analysis of the asymmetric pair (§ 5) provides further considerations for
selecting initial conditions for unequal vortices. In general, although the parameter
range of our simulations is limited, the results enable us to examine basic aspects of
asymmetric vortex interactions.

Numerical simulations were conducted using a pseudo-spectral code with a
mixed Crank–Nicolson and third-order Runge–Kutta time-marching scheme with
a fixed time step (Bewley 2010, see chapter 13). The computational domain is
Lx =Lz = 12bo, with 10242 uniform grid points. This allows approximately 27 grid
points across the core of each vortex. Periodic boundary conditions are employed in
both directions. Domain and resolution tests on both local and integrated quantities
show that the domain size and resolution are sufficient. Further discussion of these
along with consideration of the boundary conditions are given in Brandt & Nomura
(2007).
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Figure 1. Line plots of vorticity contours showing time evolution of flows for different ξΓ .

A characteristic convective time scale is the rotational period of a corresponding
point vortex system, T =2π2bo

2/Γ̄o, where Γ̄o = 0.5(Γ1,o+Γ2,o). In the results presented,
the non-dimensional time is tc

∗ = t/T .

3. Basic flow development
We begin by examining the basic development of the flows. Figure 1 shows time

sequences of vorticity contour plots for different ξΓ . Because of the mutually induced
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Figure 2. Time development of separation distance, b∗(t) = b(t)/bo. Symbols: �, ξΓ = 1; �,
ξΓ = 0.9; �, ξΓ = 0.8; ∗, ξΓ =0.7; ×, ξΓ = 0.6; , ξΓ =0.5; +, ξΓ = 0.4.

velocity, the vortices initially rotate about each other at a relatively fixed distance.
The cores grow in time because of diffusion.

In the case of equal vortices (ξΓ = 1; first row in figure 1), the vortex cores deform
elliptically as they diffuse. A tilt in the vorticity contours develops near the centre
of rotation (CR). Filaments develop at the outer edge of each vortex. The major
axes of the vortices are tilted with respect to the connecting line of the vortices;
subsequently, the vortices move rapidly towards each other and intertwine. The two
vorticity maxima eventually diffuse as the flow evolves towards axisymmetry (not
shown).

In the case of unequal vortices (ξΓ < 1), the vortices do not deform at the same
rate. As ξΓ is reduced, the deformation rate of the weaker vortex becomes increasingly
greater in comparison with that of the stronger vortex. The tilt in the weaker vortex
develops earlier. For the cases 0.7 � ξΓ � 0.9, the vortices approach each other;
however the stronger vortex appears to endure through the interaction. For ξΓ � 0.6,
the vorticity maxima do not rapidly move towards each other. Instead, the weaker
vortex is significantly deformed and becomes encircled about the stronger vortex,
eventually diffusing into its low-level outlying vorticity. The stronger-vortex core is
relatively unaffected.

Figure 2 shows the time development of non-dimensional separation distance
b∗(t) = b(t)/b0, i.e. the distance between the vorticity maxima. In all the flows, b∗(t)
remains nearly constant for some time and then exhibits a gradual reduction. As
shown in Brandt & Nomura (2007) and indicated in the visualizations (figure 1), the
gradual reduction in b∗(t) is associated with the formation of filaments. For ξΓ � 0.7,
a more rapid reduction in b∗(t) then follows, which occurs at approximately the same
time in all the flows. For ξΓ � 0.6, b∗(t) behaves differently, and beyond the early
gradual reduction, it instead exhibits an increase. As will be discussed in § 6, the
indicated increase in b∗(t) occurs at times when the weaker vortex is considered to be
destroyed. However, for some period of time, vorticity maxima continue to exist, and
thus b∗(t) is determined.

With sufficient initial separation, the vortex cores will initially increase in time
because of viscous diffusion. There are various ways of defining the size of the vortex
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Figure 3. Time development of vortex core size, a∗2
θ (t). Symbols: �, ξΓ = 1; �, ξΓ = 0.9; �,

ξΓ = 0.8; ∗, ξΓ = 0.7; ×, ξΓ =0.6.

cores to monitor this. Meunier et al. (2002) defined the core size by the second moment
of vorticity, aω. However, in the case of asymmetric vortex pairs, this approach has
difficulties, since eventually, vorticity detrained from the weaker vortex is accounted
for in the stronger vortex and vice versa. To circumvent this difficulty, we use the
(circumferential average) distance between the vorticity maximum and the maximum
azimuthal velocity as an indicator of the vortex core size aθ (Cerretelli & Williamson
2003; Brandt & Nomura 2007). Figure 3 shows a∗2

θ = a2
θ /b

2
0 for both the stronger

and weaker vortices. The initial nearly linear development in a∗2
θ corresponds to

growth by viscous diffusion. However, since the vortices also interact and undergo
mutual straining during this time, the behaviour of a∗2

θ (t) is not strictly linear. In
the symmetric case, at some point both cores deviate from their viscous growth.
This indicates a transition from a predominantly diffusive-dominated process to a
convective-dominated process which corresponds to the primary change in b∗(t).
In the asymmetric vortex interactions, the weaker-vortex core (figure 3b) deviates
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(a) (b)

(c) (d)

Figure 4. Flow structure in the co-rotating frame: (a), (b) simulation results at t∗
c = 0.32;

(c), (d ) point vortex system; (a), (c) ξΓ = 1.0; (b), (d ) ξΓ = 0.6. The streamlines show
separatrices of primary flow regions, and the shading corresponds to vorticity.

from its viscous growth earlier in time than the stronger-vortex core. However, this
does not cause b∗ to rapidly decrease (figure 2). Rather, the rapid decrease in b∗

is associated with the departure from viscous growth of the stronger-vortex core.
For sufficiently unequal vortices (ξΓ � 0.6), the latter may not be substantial or may
not occur at all (figure 3a). In general, the transition from a diffusive-dominated
to convective-dominated process, which has been used to determine the critical
aspect ratio for symmetric merger (Meunier et al. 2002), does not readily yield a
corresponding merging criterion for the asymmetric case. In order to develop an
appropriate merging criterion, we must gain a better understanding of the physics
underlying the vortex interactions.

4. Physical mechanisms
4.1. Flow structure in the co-rotating frame

As in previous studies, it is useful to consider the flow in the co-rotating reference
frame. Figure 4(a, b) shows the flow structure for ξΓ = 1 and ξΓ =0.6 simulation
results. Here, the shaded contours indicate vorticity, and the streamlines shown are the
separatrices in the co-rotating frame. In figure 4(c, d ), the separatrices are evaluated for
a corresponding point vortex system. The basic flow structure is effectively represented
by the point vortices as long as the separation is sufficiently large.

In the symmetric vortex pair (figure 4a, c), there are three primary flow regions. The
inner core regions consist of closed streamlines encircling each vorticity maximum.
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The exchange band consists of closed streamlines encompassing both the inner core
regions. The outer recirculation regions consist of fluid which circulates in the opposite
sense (in the co-rotating frame) to that of the cores and exchange band. There are
three hyperbolic points in the flow, including the central hyperbolic (CH) point which
coincides with the CR.

In the asymmetric vortex pair (figure 4b, d ), the flow structure differs. The locations
of the CH point and CR no longer coincide. For a pair of point vortices, the
normalized distance between the CR and the centres of the stronger vortex (V1) and
weaker vortex (V2), r∗

|CR−V 1| and r∗
|CR−V 2| respectively, are given by

r∗
|CR−V 1| =

r|CR−V 1|

bo

=
ξΓ

1 + ξΓ

,

r∗
|CR−V 2| =

r|CR−V 2|

bo

=
1

1 + ξΓ

,

⎫⎪⎪⎬
⎪⎪⎭

(4.1)

which indicates that the CR is located closer to the stronger vortex as ξΓ decreases.
We note that in the simulations, the CR remains nearly fixed prior to core destruction.
The point vortex system (figure 4d ) also illustrates the modified flow structure which
consists of three hyperbolic points and four primary regions. The inner core and
exchange band regions are similar to that of the symmetric case; however, the relative
location of the CH point differs. The locations of the three hyperbolic points for the
point vortex system are given by

(ξΓ + 1) d∗3
|H−V 2| − (ξΓ + 2) d∗2

|H−V 2| − ξΓ d∗
|H−V 2| + ξΓ = 0, (4.2)

where d∗
|H−V 2| = d|H−V 2|/bo is the non-dimensional distance from the weaker vortex

to a hyperbolic (H) point. Solutions of the cubic equation (4.2) can be determined
directly. A fourth-order approximation may also be obtained through a perturbation
expansion (with expansion parameter

√
ξΓ ) and provides a simple expression for the

location of the CH point,

d∗
|CH−V 2| =

√
2

2
ξΓ

1/2 − 1

8
ξΓ − 19

√
2

128
ξΓ

3/2 +
1

8
ξΓ

2,

d∗
|CH−V 1| = 1 − d∗

|CH−V 2|,

⎫⎬
⎭ (4.3)

which indicates that the smaller the value of ξΓ , the closer the CH point is to the
weaker vortex. Equation (4.3) provides a good estimate of the initial distance in finite
vortices, D2,o = d|CH−V 2|,o (to be used in § 5). We note that for very small ξΓ , the point
vortex approximation breaks down because of the close proximity of the CH point
to the finite-size core.

As will be discussed, the processes occurring in the vicinity of the CH point are key
in understanding the behaviour of the flow. In the next section, we review the underly-
ing physical processes in the development of the symmetric vortex pair. It is important
to understand the key mechanisms involved in vortex merging for this limiting case
in which the vortices undergo a fully mutual interaction. We may then consider in
§ 4.3 the asymmetric vortex pair in which these processes may occur at different times
and to varying degrees by each vortex, thereby yielding different flow behaviours.

4.2. Symmetric vortex interaction and merger

If the initial vortex separation bo is sufficiently large, the flow begins its development
in a diffusive/deformation phase, associated with constant b(t) and the nearly
linear viscous growth of a2

θ (t) (figure 3). The mutually induced strain field
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ξΓ = 0.6
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Figure 5. The vorticity contours (thin lines) with grey shading corresponding to ∇ω
production term, Ps = −(∇ωT S∇ω)/|∇ω|2 (light greyscale denotes Ps > 0, and dark greyscale
denotes Ps < 0), and the instantaneous streamlines (bold lines) in the co-rotating frame at
t∗
c = 0.32.

establishes the deformation of the vortices which can be described in terms
of the interaction of ∇ω and S (Brandt & Nomura 2006). Figure 5(a) shows
contours of Ps = −(∇ωT S ∇ω)/|∇ω|2 at a relatively early time (t∗

c = 0.32). Each vortex
exhibits a quadrupole structure of Ps , corresponding to alternate regions of gradient
amplification/attenuation by compressive/extensional straining which are associated
with the elliptic deformation of the vortices (Kimura & Herring 2001). During this
time, the correspondence between ω and the streamfunction is generally maintained,
indicating a quasi-equilibrium state (Le Dizes & Verga 2002). However, in the regions
of the hyperbolic points where low |ω| exists, the correspondence begins to deviate. In
particular, in the vicinity of the CH point where the induced strain rate is strongest
(figure 5a; the light shading near centre corresponds to Ps > 0 and high |Ps |), the
interaction of ∇ω and S eventually produces a tilt in ω contours (Brandt & Nomura
2006, 2007).

During the convective/deformation phase, a2
θ (t) continues to grow while b(t)

gradually decreases. Filamentation is initiated at the outer hyperbolic points. The
induced flow by the filaments slowly advects the vortices towards each other. The
reduction in b(t) enhances the induced S at the CH point. The enhanced tilting
of ω in the vicinity of the CH point causes ω from the core regions to enter the



Characterization of the interactions of two unequal co-rotating vortices 243

exchange band, where it is advected away. We consider the establishment of this core
detrainment process to be the predominant cause of departure from quasi-equilibrium,
diffusion-dominated conditions to convective-dominated conditions.

In the convective/entrainment phase, the vortex cores erode significantly, which
disrupts the diffusive growth of a2

θ (t). At some point, the integrity of the vortices is
sufficiently diminished. The cores are then entrained into the exchange band (they are
essentially mutually entrained), whose induced flow becomes dominant. The original
vortices are destroyed as the flow transforms into a single compound vortex. This
corresponds to the rapid reduction in b(t). A critical aspect ratio, associated with
the start of the convective/entrainment phase, is determined for a range of flow
conditions: (a/b)cr = 0.235±0.006 (Brandt & Nomura 2007). It is also noted that this
time is comparable to the time a2(t) (and a2

θ (t)) deviates from its viscous growth.

4.3. Asymmetric vortex interactions

In the case of the asymmetric vortex pair, the difference in vortex strengths alters the
flow structure and interaction. The variation in local time scales may be such that the
vortices no longer experience the flow processes simultaneously.

Initially the two vortices will develop in a diffusive/deformation phase in which
both cores grow by diffusion (figure 3). However, the greater deformation rates at
the weaker vortex will cause an earlier departure of it from this phase. A measure
of the rate of vortex deformation is the local eccentricity εl defined as the ratio
of the strain rate to the rotation rate (Le Dizes & Verga 2002). Figure 6 shows εl

evaluated at the vorticity maximum of each vortex. The results clearly indicate the
disparity in deformation rates between the vortices. We note that for ξΓ � 0.6, the
local eccentricity of the stronger vortex, εl,1, remains low and, in time, indicates little
influence by the weaker vortex. The implication of the differences in deformation
rates is indicated in figure 5(b): Ps is stronger at the weaker vortex because of the
S induced by the stronger vortex; conversely, Ps is weaker at the stronger vortex
because of the S induced by the weaker vortex. As discussed in § 4.1, the CH point is
closer to the weaker vortex. The weaker vortex is thereby subject to earlier tilting in
the vicinity of the CH point and the resultant core detrainment.

As discussed, in the symmetric vortex pair, a convective/deformation phase follows
in which there is a gradual motion of the vortices towards each other because of the
induced flow by the filaments. As seen in figure 2, this occurs at approximately t∗

c ∼ 1
(approximately one revolution of the vortex pair) for all ξΓ considered. After this
time, filaments are observed in the flows (figure 1). However, the more asymmetric
the vortex pair is, the more the filamentation that occurs on the weaker-vortex side.
Filamentation occurs when ω from the core and exchange band enters the outer-
recirculation regions because of the combined action of diffusion and tilting of ω

contours in the vicinity of the outer hyperbolic points (figure 4). Once ω enters
the outer-recirculation region, it is advected away by the flow in this region, thereby
forming filaments. As noted in § 4.1, the asymmetric pair contains an additional region
just outside the exchange band on the outer side of the stronger vortex (figure 4b,d ).
This acts to buffer the stronger vortex from the nearby outer hyperbolic point. Any ω

diffusing out from the exchange band in this region will be advected into the filament
of the weaker vortex. This change in the flow structure assists the stronger vortex to
retain its shape. In contrast, the enhanced filamentation occurring on the side of the
weaker vortex further promotes the deformation and erosion of the weaker vortex.

Although the weaker vortex experiences significant erosion, as indicated by its
departure from viscous core growth a2

θ,2(t) (figure 3b), and ω is entrained into the
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Figure 6. Time development of the local eccentricity for each vortex. Symbols: �, ξΓ = 1; �,
ξΓ = 0.9; �, ξΓ = 0.8; ∗, ξΓ =0.7; ×, ξΓ = 0.6; , ξΓ =0.5; +, ξΓ = 0.4.

exchange band, b(t) does not correspondingly exhibit a significant decrease (figure 2).
This may be understood by considering the results of Huang (2005), who used a vortex
simulation method to track Lagrangian flow structures in a symmetric vortex pair. It
is shown that the primary inward motion of a given (‘computed’) vortex is due to a
‘sheet-like’ structure emitted by the opposite (‘imaged’) vortex as it wraps around the
computed vortex (see figure 7 in Huang 2005). That is to say as a vortex is detrained,
its ω is entrained into the exchange band and advected around the companion vortex;
the induced velocity moves the companion towards it. In the symmetric case, this
process is reciprocal and equal and results in the mutual entrainment of the cores into
each other and intertwinement. In the case of the asymmetric vortex pair, the weaker
vortex erodes earlier in time. The relatively weak detrained ω may advect around
the stronger vortex; however the associated induced flow on the stronger vortex is
correspondingly weak and insufficient to result in significant motion.

If, within some time period, the stronger vortex also erodes sufficiently, then there
will be some extent of mutual (reciprocal), but unequal, entrainment. This is observed
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in the simulations with 0.7 � ξΓ � 0.9, where it is seen that the viscous growth of
the stronger core, a2

θ,1(t), is eventually interrupted (figure 3a). However in these cases,
the stronger vortex ultimately dominates (figure 1) and entrains ω from the weaker
vortex. We therefore consider the process as vortex ‘merger’, since the result is an
enhanced (compound) vortex. If significant erosion occurs in the weaker vortex before
it is established in the stronger vortex (e.g. ξΓ = 0.6), the weaker vortex is destroyed,
leaving the stronger vortex to remain in the flow relatively unaffected, since there is
no longer a significant source of external strain to deform it and initiate erosion. In
this case, merger does not occur.

We therefore consider a critical state for a given vortex to be associated with the
establishment of core detrainment. If both vortices attain this state, there will be
some degree of mutual entrainment (intertwinement) which results in an enhanced
vortex; i.e. convective merger will occur. Based on these ideas, we may now consider
the development of a merging criterion.

5. Critical strain rate parameter
From our analysis of the physics, a simple mean critical aspect ratio,

(1/2)((a1 + a2)/b), is not expected to appropriately characterize the onset of merger in
asymmetric vortex pairs, and an alternative criterion is needed. As discussed above,
we consider a critical state of a given vortex to be associated with the establishment
of core detrainment. Since the process is initiated by the interaction between S and
∇ω in the vicinity of the CH point, we expect that it will proceed if the induced local
strain rates are sufficiently high. We therefore consider one characteristic quantity
to be the strain rate at the CH point, SCH . Furthermore, we expect significant core
detrainment to occur if the vortex strength is relatively weak. A characteristic core
vorticity is the maximum, ωvi

. In order to relate the strain rate at the CH point,
which has contributions from both vortices, to the maximum vorticity of the vortex,
we normalize each quantity by a characteristic local strain rate,

S∗
CH =

SCH

SCH,o

, ω∗
vi

=
ωvi

Svi ,o

, (5.1)

where SCH,o and Svi ,o are the initial strain rates at the CH and vorticity maximum
points, respectively. This introduces appropriate scaling for these quantities. We may
then define a strain rate parameter for vortex i,

γi(t) ≡

⎛
⎜⎝ S∗

CH (t)

1

2
ω∗

vi
(t)

⎞
⎟⎠

1/2

, (5.2)

which is a measure of the relative strength of the induced strain rate at the CH point
to the vortex strength. Figure 7 shows computed γ1(t) and γ2(t) from the simulations.
We then consider the critical value of the vortex strain rate parameter to be the
value at the critical time tcr,i when core detrainment is established, i.e. γcr,2 = γ2(tcr,2)
and γcr,1 = γ1(tcr,1). As discussed in the previous section, this also corresponds to the
time at which the departure from viscous core growth occurs for the given vortex.
Thus, tcr,i can be determined from figure 3 (a∗2

θ (t)). Then, at these corresponding
times, we determine from figure 7 for the weaker and stronger vortices, respectively,
γcr,2 = 0.245 ± 0.005 and γcr,1 = 0.249 ± 0.003. The two values are within the range of
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Figure 7. Time development of the strain parameter γi for (a) vortex 1 and (b) vortex 2.
Symbols: �, ξΓ =1; �, ξΓ = 0.9; �, ξΓ = 0.8; ∗, ξΓ =0.7; ×, ξΓ = 0.6.

their variations. We therefore find a ‘single value for the critical strain rate parameter’,

γcr,1 ≈ γcr,2 ≈ γcr = 0.247 ± 0.007. (5.3)

As a rudimentary test for the generality of (5.3), some additional simulations were
performed with other parameter values (ReΓ,i , ao/bo, a2,o/a1,o). Resulting values for γcr

are within the range given in (5.3). We note that data for cases in which the simulation
initial flow condition are near or beyond the critical state, e.g. ξΓ � 0.5, is excluded
from (5.3), as will be discussed below. Regarding the sensitivity of the evaluation of γcr,i

to the determination of the CH point, since the flow is unsteady, the changing angular
velocity makes precise determination of the CH point somewhat difficult. To examine
this sensitivity, γcr,i was determined within a region surrounding the CH point of 9×9
grid points. The range of values found are γcr,1 = 0.249 ± 0.005, γcr,2 = 0.243 ± 0.006
and γcr = 0.246 ± 0.008. Thus, errors in determining the exact location of the CH
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point (within a distance of approximately 0.3ao/bo) may introduce errors in the strain
rate parameter value of 2–3 % for the flow conditions considered.

We now further consider the strain rate parameter, in particular that of the weaker
vortex γ2, through a scaling analysis. Prior to significant vortex interaction, SCH is
proportional to the local external strain rate which depends on the distance between
the vortices and CH point, Di = d|CH−Vi |, and ωvi

is proportional to the ratio of Γi

and a2
ω,i ,

SCH ∝ Γ1

2π D2
1

+
Γ2

2π D2
2

, ωvi
∝ Γi

π a2
ω,i

. (5.4)

We thereby have the following scaling for the non-dimensional strain rate and
vorticity:

S∗
CH =

SCH

SCH,o

∝
[

Γ2

Γ2,o

] [
D2

2,o

D2
2

]
⎡
⎢⎢⎢⎣

1 +
1

ξΓ

D2
2

D2
1

1 +
1

ξΓ

D2
2,o

D2
1,o

⎤
⎥⎥⎥⎦ ,

ω∗
vi

=
ωvi

Svi ,o

∝
[

Γi

Γ1,o

] [
2

a∗2
ω,i

]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(5.5)

Note that in the equations above, the approximation that Γ2/Γ1 ≈ Γ2,o/Γ1,o = ξΓ was
made. This relationship, as well as the scaling in (5.4), holds reasonably well up to the
critical state of the weaker vortex. The strain rate parameter for the weaker vortex,
γ2, may then be related to ξΓ along with aω and Di ,

γ2(t) ≡

⎛
⎜⎝ S∗

CH

1

2
ω∗

v2

⎞
⎟⎠

1/2

=

⎛
⎜⎜⎜⎝

⎡
⎢⎣ SCH

1

2
ωv2

⎤
⎥⎦

[
D2

2,o

ξΓ

]
⎡
⎢⎢⎢⎣

1

1 +
1

ξΓ

D2
2,o

D2
1,o

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠

1/2

(5.6)

∝ a∗
ω,2 ξΓ

−1/2

[
D2,o

D2

]
⎛
⎜⎜⎜⎝

1 +
1

ξΓ

D2
2

D2
1

1 +
1

ξΓ

D2
2,o

D2
1,o

⎞
⎟⎟⎟⎠

1/2

. (5.7)

This gives the following scaling for γcr for the weaker vortex:

γcr,2 = f a∗
ω,2(t

∗
cr,2)ξΓ

−1/2

[
D2

2,o

D2
2(t

∗
cr,2)

]
⎛
⎜⎜⎜⎝

1 +
1

ξΓ

D2
2(t

∗
cr,2)

D2
1(t

∗
cr,2)

1 +
1

ξΓ

D2
2,o

D2
1,o

⎞
⎟⎟⎟⎠

1/2

, (5.8)

where f is a proportionality constant. From the simulation results for the weaker
vortex (γcr,2 = 0.245 ± 0.005) and (5.8), the proportionality factor is found to be
f =1.05 ± 0.03. In the case of a ‘symmetric vortex pair’ (ξΓ =1), (5.8) reduces to

γcr,2 =

⎛
⎜⎝ S∗

CH (t∗
crit )

1

2
ω∗

v2
(t∗

crit )

⎞
⎟⎠

1/2

=

(
SCH (t∗

crit )

4ωvi
(t∗

crit )

)1/2

= f
a∗

ω(t∗
crit )

2 D(t∗
crit )

= f

(
aω

b

)
crit

. (5.9)
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Thus in this case, γcr,2 = γcr,1 = γcr is directly related to the critical aspect ratio
(aω/b)crit . From the results indicated above, γcr,2/f = 0.233 ± 0.005. This can be
compared with our previous results for symmetric merger, (aω/b)crit =0.235 ± 0.006
(Brandt & Nomura 2007). The good agreement demonstrates the relation in (5.9) and
our determined value for f .

We note that a corresponding scaling analysis (5.8) for the stronger-vortex critical
strain rate γcr,1 may not be carried out. In general, when (if) the stronger vortex
reaches the critical state, significant changes may have occurred for the weaker vortex,
and the associated strain field and scaling for SCH are no longer straightforward. We
also noted earlier that data for ξΓ � 0.5 are not included in the determination of γcr,i

in (5.3). Recall that for lower ξΓ , the CH point is closer to the weaker vortex (4.3).
From (5.6) and (4.3), the weaker-vortex core size for ξΓ = 0.5 is a∗

ω,2(t
∗
cr,2) ≈ 0.163,

which is close to the initial value of a∗
o = 0.157 (initial aspect ratio). Therefore, for

aω,o/bo = 0.157 and ξΓ � 0.5, the weaker vortex is already close to or beyond the
critical state and is quickly destroyed. This gives more precise limitations on the
initial conditions for the simulations than discussed in § 2.

As discussed in § 4.3, for an asymmetric vortex pair, convective merger will occur if
both vortices reach the critical state. The critical state of the weaker vortex is achieved
earlier, when γ2(t) = γcr,2. From figure 7(b) it is observed that γ1(t) eventually reaches
its critical value for ξΓ � 0.7. However, in the case of ξΓ = 0.6, γ1(t) does not achieve
the critical value, and correspondingly, aθ,1 does not deviate from viscous growth
(figure 3a). Core detrainment is not established by the stronger vortex, and convective
merger does not occur in this case.

6. Merging criterion and classification of vortex interactions
In our viscous flow simulations in § 4.3, several distinct vortex interactions/flow

regimes are observed for the asymmetric pair. We may characterize these interactions,
and in particular merger, based on the timing of key processes: weaker-vortex
core detrainment, stronger-vortex core detrainment and weaker-vortex destruction.
Figure 8 shows these process times (scaled by convective time scale) as a function
of ξΓ . The observed interactions may be identified in terms of the relative timing of
these processes. We first consider each of the times separately.

The time required for the weaker vortex to reach the critical state (γ2(t) = γcr ), t∗
cr,2

(� in figure 8), is seen to increase linearly with respect to ξΓ . As stated earlier, t∗
cr,2

is evaluated in the simulations as the time of departure from viscous core growth.
Based on the scaling analysis in the previous section (§ 5), t∗

cr,2 can then be estimated
through the right-hand side of (5.8) and assuming a linear viscous growth relation
for aω(t),

a2
ω,2 = c2

ω,2 ν t + a2
ω,o. (6.1)

For symmetric vortex pairs, Brandt & Nomura (2007) found cω = 2.11 for all cases
considered, and the behaviour is similar to that of a single vortex. However, in the
asymmetric vortex pairs, the weaker-vortex core growth differs (figure 3b), and the
growth rate is found to scale with the rotation rate c2

ω,2 = 2.112
√

.5(1 + ξΓ ). From
(5.8), the resulting equation is of the form

t∗
cr,2 ≈

([
γ 2

cr

f 2

][
ReΓ,2

4 c2
ω,2 π2

]
g −

[
a∗2

ω,oReΓ,1

4 c2
ω,2 π2

])[
1 + ξΓ

]
, (6.2)
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where the factor g is given by

g =

[
D2

2(t
∗
cr,2)

D2
2,o

]
⎡
⎢⎢⎢⎣

1 +
1

ξΓ

D2
2,o

D2
1,o

1 +
1

ξΓ

D2
2(t

∗
cr,2)

D2
1(t

∗
cr,2)

⎤
⎥⎥⎥⎦ . (6.3)

In general, the precise behaviours of D1(t) and D2(t) are complex. However, prior
to detrainment of the weaker vortex, the CH point is not significantly altered by
changes in the flow field. Evaluation of g (6.3) using D1(t

∗
cr,2) and D2(t

∗
cr,2) from

the simulations gives g =0.985 ± 0.008, which indicates that this parameter may be
considered approximately constant for the cases considered. After detrainment of the
weaker vortex is established, the hyperbolic points begin to significantly shift, and this
approximation becomes invalid. Using this approximation in (6.2) gives the resulting
prediction for t∗

cr,2, which is represented by the dashed line in figure 8. As indicated,
the relation effectively predicts the time for weaker-vortex core detrainment. This also
corroborates our scaling analysis in § 5.

The time at which the stronger vortex reaches the critical state, t∗
cr,1 (� in figure 8),

appears to be independent of ξΓ . Therefore, this critical time may be defined based
on the case of symmetric merger. Using (5.9) and (6.1), we obtain

t∗
cr,1 = [ReΓ,1 + ReΓ,2]

[
a∗2

ω,1 − a∗2
ω,o

4 c2
ω,1π

2

]
≈ ReΓ,1

(γcr/f )2 b∗2
sym − a∗2

ω,o

2 c2
symπ2

. (6.4)

For our simulation flow conditions, t∗
cr,1 = 1.65 ± 0.02. We note that unlike the

weaker vortex, the stronger-vortex core growth is not dependent on rotation rate
and cω,1 ≈ 2.11.

The final process time considered is the time characterizing the destruction of
the weaker vortex, t∗

de,2 (∗ in figure 8). In the present analysis, the weaker vortex
is considered to be destroyed when its core vorticity no longer dominates over the



250 L. K. Brandt and K. K. Nomura

imposed strain rate field. An indicator of this is the second invariant of the velocity
gradient tensor, II = (ω2/2 − S2)/2. Thus, we estimate the destruction time t∗

de,2 when
the local value of II at the vorticity maximum, IIV 2, is very small. The values
shown in figure 8 correspond to IIV 2 = 0.05 IIV 1,0. Although this is a highly simplified
characterization of vortex destruction, it serves the purposes of the present analysis.
Other flow characteristics, e.g. b∗(t) (figure 2, ξΓ � 0.7), also indicate that the flow is
significantly altered around the time, t∗ = t∗

de,2.
We now formulate a classification scheme for the observed vortex interactions in

§ 4.3. We consider the classifications previously developed for inviscid asymmetric
vortex interactions (Dritschel & Waugh 1992; Trieling et al. 2005). However, here
we modify the definitions for viscous flow. Based on our analysis, we classify our
simulations in terms of three interactions: complete merger, partial merger and
straining-out. These are characterized as follows.

(i) Complete merger (ξΓ = 1.0 in present simulations): detrainment from both
vortices; mutual entrainment of the cores transforms the flow into a single vortex,

t∗
cr,2 ≈ t∗

cr,1 < t∗
de,2. (6.5)

(ii) Partial merger (ξΓ = 0.9, 0.8, 0.7): detrainment from both vortices; weaker
vortex is destroyed and entrained by the stronger vortex,

t∗
cr,2 < t∗

cr,1 < t∗
de,2. (6.6)

(iii) Straining-out (ξΓ � 0.6): detrainment from weaker vortex only; weaker vortex
is destroyed,

t∗
cr,2 < t∗

de,2 < t∗
cr,1. (6.7)

These interactions all eventually result in a single vortex for which the circulation
may differ from that of the initial vortices. In complete merger, the circulation of
the final compound vortex is greater than that of either original vortex. This increase
is due to the mutual entrainment of both vortices and the transformation into a
single vortex. The concept of partial merger in a viscous fluid is not as clear as in
inviscid interactions. In the cases considered, vorticity is detrained from both vortices;
however, the weaker vortex is destroyed before the stronger vortex is significantly
eroded. Ultimately, the stronger vortex dominates and is enhanced by the entrained
vorticity from the weaker vortex. The interaction thus still yields a compound vortex
with increased circulation. In the flows in which the weaker vortex is strained out,
there is no mutual entrainment. The stronger vortex remains, but its circulation may
not be significantly changed. These interactions do not yield a compound vortex, and
thus merger does not occur.

7. Conclusions
The interaction of two unequal co-rotating vortices in a viscous fluid has been

investigated using two-dimensional numerical simulations. The vortices considered
have the same initial core size and different strengths. In the simulations presented,
the initial aspect ratio is fixed at a0/b0 = 0.157. The initial strength of the stronger
vortex is given by ReΓ,1 = 5000, and the range of values of the initial circulation ratio
considered is 0.4 � ξΓ � 1.0. Although the parameter range of our simulations is
limited, the results reveal the basic aspects of asymmetric vortex interactions.

The primary physical mechanisms involved in the vortex interactions and
development of the flow are identified and described. As in symmetric vortex pairs,
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the vortices initially grow by diffusion. In the vicinity of the CH point, the interaction
of ∇ω and induced S may produce a tilt in ω contours, which causes ω from
the core region to enter the exchange band, thereby initiating core detrainment.
In the asymmetric pair, the deformation rates are stronger at the weaker vortex
because of the difference in induced S, and the tilt of ω contours and subsequent
core detrainment occur earlier than the stronger vortex. However, the dominant
attracting motion occurs only when, and if, core detrainment is established by the
stronger vortex. If this occurs, then there will be some extent of mutual (reciprocal)
but unequal entrainment. This intertwinement is needed for merging and is observed
in the present simulations (a0/b0 = 0.157, ReΓ,1 = 5000) for 0.7 � ξΓ � 0.9. However
in these cases, the stronger vortex ultimately dominates and entrains vorticity from
the weaker vortex. We therefore consider the process as vortex ‘merger’, since the
result is an enhanced compound vortex. If core detrainment is not established by
the stronger vortex before significant erosion occurs in the weaker vortex (ξΓ � 0.6),
the weaker vortex is destroyed, leaving the stronger vortex to remain in the flow
relatively unaffected. In this case, merger does not occur.

Knowledge of the key underlying processes enables the development of a basis for
a merging criterion for unequal vortices. We consider the critical state for a given
vortex to be associated with the establishment of core detrainment. A vortex strain
rate parameter, γi , is defined in terms of the ratio of the strain rate at the CH point,
SCH , to the maximum vorticity of vortex i, ωvi

, thereby providing a measure of the
relative strength of the induced strain rate at the CH point to the vortex strength. We
then consider the critical value of γi to be the value at the critical time, tcr,i , when core
detrainment (and entrainment into exchange band) is established, i.e. γcr,2 = γ2(tcr,2)
and γcr,1 = γ1(tcr,1). The onset of merging is associated with the joint achievement
of the critical strain rate by both vortices. For all our simulations, we find a single
critical value for both vortices, i.e. γcr,1 = γcr,2 = γcr = 0.247 ± 0.007. In the case of
equal vortices, the critical strain rate is shown to be related to the critical aspect ratio
(5.9). From the present results, γcr,2/f = 0.233 ± 0.005, which compares well with the
previously determined values for the critical aspect ratio for symmetric vortex merger,
(aω/b)crit = 0.235 ± 0.006 (Brandt & Nomura 2007).

From our viscous flow simulations, three distinct vortex interactions are observed.
We define the interactions based on modifications of the classifications previously
developed for inviscid asymmetric vortex interactions (Dritschel & Waugh 1992;
Trieling et al. 2005). However, here we characterize the interactions based on the
relative timing of key processes: weaker-vortex core detrainment (tcr,2), stronger-
vortex core detrainment (tcr,1) and weaker-vortex destruction (tde,2). We consider
‘complete merger’ to occur if both vortices reach γcr and are mutually entrained
prior to vortex destruction (t∗

cr,2 ∼ t∗
cr,1 < t∗

de,2). The flow is transformed into a
single compound vortex in which the final circulation is increased because of the
contribution of both vortices. We consider ‘partial merger’ to occur when both
vortices reach γcr ; however, the weaker vortex is destroyed before the stronger
vortex is significantly eroded (t∗

cr,2 < t∗
cr,1 < t∗

de,2). Ultimately, the stronger vortex
dominates and is enhanced by the entrained vorticity from the weaker vortex. The
interaction thus yields a compound vortex with increased circulation. We consider
flows in which the weaker vortex is ‘straining out’ when only the weaker-vortex
core is detrained and destroyed (t∗

cr,2 < t∗
de,2 < t∗

cr,1). There is no mutual entrainment.
The stronger vortex remains, but its circulation may not be significantly altered.
These interactions do not yield a compound vortex, and thus merger does not
occur.
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In conclusion, we have developed a description of asymmetric vortex interactions
for viscous flow and, in particular, a more general criterion for vortex merger, i.e.
t∗
cr,2 � t∗

cr,1 < t∗
de,2. While this specifies the required conditions for merging, our results

do not yet enable the prediction of the outcome for a given initial vortex pair. In the
case of symmetric pairs in viscous fluid, t∗

cr,2 = t∗
cr,1 = t∗

cr , and since t∗
cr < t∗

de will always
be the case (detrainment occurs before destruction), convective merger will ‘eventually’
occur in all vortex pairs, assuming the vortices remain sufficiently strong. The onset
of merging, t∗

cr , can be estimated by assuming viscous core growth until (aω/b)crit is
attained (as in (6.1)). In the present analysis for asymmetric pairs, we have obtained
relations which enable predictions for t∗

cr,2 and t∗
cr,1 based on the determined value of

γcr . However, a predictive merging criterion will be more complex, since it requires the
knowledge of the vortex destruction time, t∗

de,2, and a relative comparison of the three
time scales. Furthermore, t∗

cr,i depends on ReΓ,i , and since the flow evolution involves a
change from diffusion-dominated to convective-dominated conditions, we may expect
some Reynolds-number-dependent behaviour at low to moderate values of ReΓ,i for
which diffusive and convective time scales do not widely differ. Nevertheless, our
analysis provides a basis for a generalized vortex merging criterion. Further efforts
are needed to demonstrate these results with additional numerical simulations, which
extend the parameter range, and laboratory experiments.
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